35 research outputs found

    Analysis of Software Binaries for Reengineering-Driven Product Line Architecture\^aAn Industrial Case Study

    Full text link
    This paper describes a method for the recovering of software architectures from a set of similar (but unrelated) software products in binary form. One intention is to drive refactoring into software product lines and combine architecture recovery with run time binary analysis and existing clustering methods. Using our runtime binary analysis, we create graphs that capture the dependencies between different software parts. These are clustered into smaller component graphs, that group software parts with high interactions into larger entities. The component graphs serve as a basis for further software product line work. In this paper, we concentrate on the analysis part of the method and the graph clustering. We apply the graph clustering method to a real application in the context of automation / robot configuration software tools.Comment: In Proceedings FMSPLE 2015, arXiv:1504.0301

    Effect of carbohydrate feeding on the bone metabolic response to running

    Get PDF
    Bone resorption is increased after running, with no change in bone formation. Feeding during exercise might attenuate this increase, preventing associated problems for bone. This study investigated the immediate and short-term bone metabolic responses to carbohydrate (CHO) feeding during treadmill running. Ten men completed two 7-day trials, once being fed CHO (8% glucose immediately before, every 20 min during, and immediately after exercise at a rate of 0.7 g CHO·kg body mass-1·h-1) and once being fed placebo (PBO). On day 4 of each trial, participants completed a 120-min treadmill run at 70% of maximal oxygen consumption (VO2 max). Blood was taken at baseline (BASE), immediately after exercise (EE), after 60 (R1) and 120 (R2) min of recovery, and on three follow-up days (FU1-FU3). Markers of bone resorption [COOH-terminal telopeptide region of collagen type 1 (β-CTX)] and formation [NH2-terminal propeptides of procollagen type 1 (P1NP)] were measured, along with osteocalcin (OC), parathyroid hormone (PTH), albumin-adjusted calcium (ACa), phosphate, glucagon-like peptide-2 (GLP-2), interleukin-6 (IL-6), insulin, cortisol, leptin, and osteoprotogerin (OPG). Area under the curve was calculated in terms of the immediate (BASE, EE, R1, and R2) and short-term (BASE, FU1, FU2, and FU3) responses to exercise. β-CTX, P1NP, and IL-6 responses to exercise were significantly lower in the immediate postexercise period with CHO feeding compared with PBO (β-CTX: P=0.028; P1NP: P=0.021; IL-6: P=0.036), although there was no difference in the short-term response (β-CTX: P=0.856; P1NP: P=0.721; IL-6: P=0.327). No other variable was significantly affected by CHO feeding during exercise. We conclude that CHO feeding during exercise attenuated the β-CTX and P1NP responses in the hours but not days following exercise, indicating an acute effect of CHO feeding on bone turnover

    Characterization of large in-frame von Willebrand factor deletions highlights differing pathogenic mechanisms

    Get PDF
    Copy number variation (CNV) is known to cause all von Willebrand disease (VWD) types, although the associated pathogenic mechanisms involved have not been extensively studied. Notably, in-frame CNV provides a unique opportunity to investigate how specific von Willebrand factor (VWF) domains influence the processing and packaging of the protein. Using multiplex ligation-dependent probe amplification, this study determined the extent to which CNV contributed to VWD in the Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease cohort, highlighting in-frame deletions of exons 3, 4-5, 32-34, and 33-34. Heterozygous in vitro recombinant VWF expression demonstrated that, although deletion of exons 3, 32-34, and 33-34 all resulted in significant reductions in total VWF (P < .0001, P < .001, and P < .01, respectively), only deletion of exons 3 and 32-34 had a significant impact on VWF secretion (P < .0001). High-resolution microscopy of heterozygous and homozygous deletions confirmed these observations, indicating that deletion of exons 3 and 32-34 severely impaired pseudo-Weibel-Palade body (WPB) formation, whereas deletion of exons 33-34 did not, with this variant still exhibiting pseudo-WPB formation similar to wild-type VWF. In-frame deletions in VWD, therefore, contribute to pathogenesis via moderate or severe defects in VWF biosynthesis and secretion

    Severe Exercise and Exercise Training Exert Opposite Effects on Human Neutrophil Apoptosis via Altering the Redox Status

    Get PDF
    Neutrophil spontaneous apoptosis, a process crucial for immune regulation, is mainly controlled by alterations in reactive oxygen species (ROS) and mitochondria integrity. Exercise has been proposed to be a physiological way to modulate immunity; while acute severe exercise (ASE) usually impedes immunity, chronic moderate exercise (CME) improves it. This study aimed to investigate whether and how ASE and CME oppositely regulate human neutrophil apoptosis. Thirteen sedentary young males underwent an initial ASE and were subsequently divided into exercise and control groups. The exercise group (n = 8) underwent 2 months of CME followed by 2 months of detraining. Additional ASE paradigms were performed at the end of each month. Neutrophils were isolated from blood specimens drawn at rest and immediately after each ASE for assaying neutrophil spontaneous apoptosis (annexin-V binding on the outer surface) along with redox-related parameters and mitochondria-related parameters. Our results showed that i) the initial ASE immediately increased the oxidative stress (cytosolic ROS and glutathione oxidation), and sequentially accelerated the reduction of mitochondrial membrane potential, the surface binding of annexin-V, and the generation of mitochondrial ROS; ii) CME upregulated glutathione level, retarded spontaneous apoptosis and delayed mitochondria deterioration; iii) most effects of CME were unchanged after detraining; and iv) CME blocked ASE effects and this capability remained intact even after detraining. Furthermore, the ASE effects on neutrophil spontaneous apoptosis were mimicked by adding exogenous H2O2, but not by suppressing mitochondrial membrane potential. In conclusion, while ASE induced an oxidative state and resulted in acceleration of human neutrophil apoptosis, CME delayed neutrophil apoptosis by maintaining a reduced state for long periods of time even after detraining

    Communications Biophysics

    Get PDF
    Contains research objectives and summary of research on five research projects, with ten sub-topics.National Institutes of Health (Grant 1 RO1 NS10916-01)National Institutes of Health (Grant 5 RO1 NS11000-03)National Institutes of Health (Grant 1 RO1 NS11153-01)Harvard-M.I.T. Rehabilitation Engineering CenterU. S. Department of Health, Education, and Welfare (Grant 23-P-55854)National Institutes of Health (Grant 1 RO1 NS11680-01)National Institutes of Health (Grant 5 ROI NS11080-02)M.I.T. Health Sciences FundNational Aeronautics and Space Administration (Grant NSG-2032)National Institutes of Health (Grant 5 TO1 GM01555-09)Massachusetts General Hospital Purchase Order F63853Boston City Hospital Purchase Order 4338-7543

    Communications Biophysics

    Get PDF
    Contains research objectives and summary of research on thirteen research projects split into four section.National Institutes of Health (Grant 1 RO1 NS10737-01)National Institutes of Health (Grant 1 ROI NS10916-01)National Institutes of Health (Grant 5 RO1 NS11000-02)National Institutes of Health (Grant 1 RO1 NS11153-01)Harvard M.I.T. Rehabilitation Engineering CenterU. S. Department of Health, Education, and Welfare, Grant 23-P-55854National Institutes of Health (Grant 1 RO1 NS11680-01)Norlin Music, Inc.Clarence J. LeBel FundNational Institutes of Health (Grant 1 RO1 NS11080-01A1)National Institutes of Health (Grant 5 TO1 GM01555-08)M.I.T. Health Sciences FundBoston City Hospital Purchase Order 1176-05-21335-C

    Communications Biophysics

    Get PDF
    Contains research objectives and summary of research on nine research projects split into four sections.National Institutes of Health (Grant 5 ROI NS11000-03)National Institutes of Health (Grant 1 P01 NS13126-01)National Institutes of Health (Grant 1 RO1 NS11153-01)National Institutes of Health (Grant 2 R01 NS10916-02)Harvard-M.I.T. Rehabilitation Engineering CenterU. S. Department of Health, Education, and Welfare (Grant 23-P-55854)National Institutes of Health (Grant 1 ROl NS11680-01)National Institutes of Health (Grant 5 ROI NS11080-03)M.I.T. Health Sciences Fund (Grant 76-07)National Institutes of Health (Grant 5 T32 GM07301-02)National Institutes of Health (Grant 5 TO1 GM01555-10
    corecore